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Abstract

This paper presents a study to describe the behaviour of a non-equilibrium bubble in a fluid (Fluid 1) that is in contact
with another fluid (Fluid 2). Fluid 2 is assumed to incorporate some elastic properties, which are modelled through a pres-
sure term at the fluid–fluid interface. The Laplace equation is assumed to be valid in both fluids and the boundary integral
method is employed to simulate the dynamics of the bubble and the fluid–fluid interface. Interesting characteristic phenom-
ena concerning bubble oscillations and the deformation of the fluid–fluid interface are studied for a range of parameters
(distance from the fluid–fluid interface, density ratios of the two fluids and elastic properties of Fluid 2). Some of the phe-
nomena observed are jet formation in the bubble, bubble splitting, a ring bubble separating from the main bubble, mush-
room-shaped bubbles and the dynamic elevation of the elastic interface. Most of these phenomena are only observed when
Fluid 2 possesses some elastic properties (besides the usual formation of a high speed liquid jet). Comparisons with exper-
imental observations confirm the validity of our simulations.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the earliest scientific studies concerning non-equilibrium bubbles was directed towards cavitation
bubble erosion on ship propellers by Rayleigh (1917). Another area of interest is in underwater warfare where
large explosion bubbles of several meters in radius were studied extensively by, for example, Cole (1948). In
both cavitation erosion and underwater explosions, the bubbles deform to produce a high speed liquid jet
when they collapse near solid structures or boundaries. When the bubble-induced liquid jet (originating from
one surface of the bubble) impacts on the opposite surface of the bubble, an intense blast wave is produced.
Both the blast wave and the impinging jet can have devastating effects as they induce stress loading on the
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structure, which can lead to material failure; see for example Plesset and Chapman (1971). Violently collapsing
bubbles can even emit light (sono-luminescence) under certain conditions as described in Brenner et al. (2002).
In the last two decades, the high speed jet impingement and the resulting blast wave have been successfully
applied to kidney stone fragmentation (or Shock Wave Lithotripsy); see Coleman et al. (1987), Kodama
and Takayama (1998), Delius (2000). It has also been used in several other bio-medical treatments in ortho-
paedics and pain management. Impacting jets have also been suggested as a means of delivering drugs to a
targeted tissue as suggested by Shangguan et al. (1995, 1996) or Fletcher et al. (2002).

The type of boundary in the vicinity of an oscillating bubble seems to be able to influence its behaviour.
Besides jet formation towards a solid boundary, a jet has been observed to accelerate away from a free surface
by Blake and Gibson (1981), Blake et al. (1987). If the boundary possesses some elastic properties (such as
jelly-like materials), recent experimental observations by Brujan et al. (2001a,b) revealed a very complex
behaviour of the bubble during its collapse phase. The bubble can even split up into two smaller sub-bubbles;
see Gibson and Blake (1982), Shima et al. (1989), Kodama and Tomita (2000) or Tomita and Kodama (2003).
Similar behaviour was observed when bubbles were oscillating near a solid surface coated with an elastic mate-
rial such as rubber (Gibson, 1968; Gibson and Blake, 1982; Blake and Gibson, 1987).

The experimental work of Brujan et al. (2001a), which looked into the behaviour of laser-generated bubbles
near a transparent polyacrylamide (PAA) gel with 80% water concentration was probably the first to provide
high quality images of a non-equilibrium bubble near an elastic interface using a high speed camera. Interest-
ing phenomena such as bubble splitting, migration of the bubble and jet-like ejection of boundary material
were observed. Brujan et al. (2001b) further extended their study by performing a parametric study of the
influence of the elastic modulus of the PAA gel/water mixture on the bubble evolution (by changing the ratio
of PAA gel and water). Not only are the elastic properties of the gel important, but also the distance of the
bubble to the elastic material is found to be a crucial parameter.

An ideal tool to simulate non-equilibrium bubbles is the boundary integral method (BIM) as shown by
Blake et al. (1987), Wang et al. (1996a) or Wang and Khoo (2004). Since only the boundaries of the problem
need a mesh, tracking these boundaries (such as the bubble interface) is accomplished with more ease than
with other conventional methods. Duncan and Zhang (1991), Duncan et al. (1996) simulated an oscillating
bubble near an elastic boundary using BIM. Unlike Duncan and Zhang (1991) who modelled the elastic
boundary using a finite difference method, Duncan et al. (1996) employed a finite element method to model
the elastic boundary.

A new approach, based on the work of Klaseboer and Khoo (2004a), was developed by Klaseboer and
Khoo (2004b), which employed a full BIM, both in the fluid containing the bubble (Fluid 1) and inside the
elastic material (Fluid 2). The elasticity of the material is represented through a pressure term at the interface
between Fluids 1 and 2 (fluid–fluid interface) and the Laplace equation is assumed to be valid for both fluids.
Klaseboer and Khoo (2004b) have shown that the interaction of the bubble with the elastic boundary for a
range of elasticity parameters yields complex bubble behaviour, similar to those observed experimentally
by Brujan et al. (2001a). The influence of the stand-off distance was, however, not investigated by Klaseboer
and Khoo (2004b). The present work is therefore intended to address this issue among others and at the same
time to perform a parametric study, where also some other phenomena not covered previously in Klaseboer
and Khoo (2004b) will be investigated. Both the behaviour of the bubble and the fluid–fluid interface are given
particular attention.

This paper is arranged as follows. The theoretical model is presented briefly in Section 2. Results of some
numerical simulations are presented in Section 3. Besides some specific comparisons with experimental obser-
vations available in literature for both the dynamics of the bubble and the fluid–fluid interface, a short para-
metric study on bubble behaviour for various parameters is also presented. In Section 4, the conclusions are
given.

2. The model

A very brief description of the model will be given here. Suppose two fluids (labelled as ‘1’ and ‘2’) are sep-
arated by an interface, referred to as ‘fluid–fluid interface’ (Fig. 1). Both fluids are assumed to extend to infin-
ity. A non-equilibrium bubble is located in a non-elastic Fluid 1 at a distance H away from the fluid–fluid
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Fig. 1. Schematic outline of the configuration used. A non-equilibrium bubble b, is contained in a non-elastic Fluid 1 that is in contact
with an elastic Fluid 2. Both fluids are separated by a fluid–fluid interface i. The bubble’s centre is initially located at a distance H from the
initial equilibrium position of the interface i (broken horizontal line). The elevation of the interface i during bubble evolution is indicated
with h.
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interface. H is often referred to as stand-off distance. Fluid 2 may possess some elasticity. The problem under
consideration is axisymmetric with the z-axis as the axis of symmetry. The densities of the two fluids, q1 and
q2, can be different. Two dimensionless constants characterise the bubble dynamics, the density ratio between
Fluids 1 and 2 (a) and the elasticity parameter, (j) as introduced by Klaseboer and Khoo (2004b). They are
given by
a ¼ q1

q2

ð1Þ
and
j ¼ a
E

2ð1� t2Þp1
: ð2Þ
Here E is the elastic modulus (or Young modulus) and t is the Poisson ratio of Fluid 2. For materials that
exhibit fluid like behaviour, such as those considered here, t = 0.5. The reference pressure is p1 (atmospheric
pressure).

For non-dimensionalisation, a suitable scaling factor for lengths is the maximum bubble radius Rm (i.e. the
maximum bubble radius in an infinite medium with similar initial conditions). Time t is scaled with
t0 ¼ Rm

ffiffiffiffiffi
q1

p1

q
and pressure is scaled with p1. All variables with a prime are considered dimensionless in this

work. The dimensionless parameters for the model are a, j and
H 0 ¼ H=Rm: ð3Þ

The parameter H 0 is independent of the properties of both Fluids 1 and 2. On the other hand, the elasticity
parameter j and the density ratio a can be considered as quantities depending only on the two fluids and
not on the size or position of the bubble. In this work, the simulations are emphasised on a � 1 since this value
is mostly encountered in bio-medical applications (most biological tissue has a density equal to or close to the
density of water, which assumes a magnitude of q1 = 998 kg/m3). Effectively, only H 0 and j remain as the
ranging parameters in this work. The bubble strength e is defined as the ratio of the initial pressure in
the bubble to the reference pressure, i.e.
e ¼ pg0=p1: ð4Þ
However, as found and discussed in Section 3.4, its influence is not very large. In the present work, e = 100
with the corresponding initial dimensionless bubble radius R00 ¼ 0:1485 is employed for most simulations.
However, for some examples e = 500 and R00 ¼ 0:08397 are used; these examples will be clearly indicated as
such.

The numerical implementation is based on potential flow approximations in Fluid 1 and 2. The boundary
integral method is applied in both fluids. This will yield a relationship between the potentials and normal
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velocities on the interfaces (i.e. bubble and fluid–fluid interface for Fluid 1 and fluid–fluid interface only for
Fluid 2). Strictly, the potential flow approximation is not valid in a material with some elastic properties such
as Fluid 2. However, in a weakly elastic material, such as studied in the present work, we shall assume that the
material still behaves like a fluid. The elasticity of Fluid 2 is taken into account as an extra pressure term
across the fluid–fluid interface, which is linearly dependent on the deformation of this interface or h (we intro-
duced h as the elevation of the fluid–fluid interface with respect to its equilibrium position, h = h(r, t)). Thus,
this pressure term accounts for an additional ‘resistance to deformation’ in Fluid 2. For low values of j (650)
this seems a reasonable approximation, and is deemed so since we are interested in (bio) materials with large
water content.

Two boundary conditions are imposed at the fluid–fluid interface. The first is the normal velocity is
assumed to be continuous at the fluid–fluid interface. A second boundary condition arises from the pressure
difference across the said interface. If the interface is initially planar (equilibrium position) and Fluid 2 incor-
porates some elastic bulk properties, Klaseboer and Khoo (2004b) have shown that this pressure difference can
be expressed as
Fig. 2.
conten
corresp
of the
and I a
G at t
p1 � p2 ¼
E

2ð1� t2ÞRm

h: ð5Þ
Eq. (5) is only valid if Fluid 2 extends to infinity, or in practical terms, is sufficiently ‘thick’. This approxima-
tion should hold if Fluid 2 is at least a few bubble diameters thick. The pressures p1 and p2 can be calculated
using the unsteady Bernoulli’s equation in both fluids and thus presents a means to relate it to the potentials
on the fluid–fluid interface. On the bubble surface, Bernoulli’s equation can be used to calculate the potential
via the pressure set equal to the internal bubble pressure. The internal pressure of the bubble is assumed to
behave adiabatically via
p0b ¼ e
V 00
V 0

� �c

; ð6Þ
where V 00=V 0 is the volumetric ratio and c (ratio of specific heats) = 1.25. Full details about the numerical
method and implementation are given in Klaseboer and Khoo (2004a,b).

In the simulation, when a thin jet develops as the bubble evolves, the computational nodes tend to group
together around the jet tip area, which can cause numerical instabilities. An improvement over the numerical
scheme employed by Klaseboer and Khoo (2004b) is the implementation of a grid redistribution scheme
Comparisons of numerical and experimental results of a non-equilibrium bubble near an elastic interface of PAA/50% water
t: H 0 = 0.88 and a = 0.889. (a) Numerical simulation with e = 100, j = 15. Individual frame dimension of 2.258 dimensionless width
onds to the 3.5 mm individual frame width of Fig. 2b. Frame dimensionless times: A at t 0 = 0, C at t 0 = 0.411 (largest deformation

fluid–fluid interface), D at t 0 = 0.902 (maximum volume of the bubble), F at t 0 = 1.710, G at t 0 = 1.770, H at t 0 = 1.855, t 0 = 1.882
t t 0 = 1.920. (b) Experimental observation from Brujan et al. (2001a): A at t 0 = 0, C at t 0 = 0.386, D at t 0 = 0.772, F at t 0 = 1.415,
0 = 1.544, H at t 0 = 1.673 and I at t 0 = 1.806. In the experiment j = 12.0 and the maximum bubble radius is Rm = 1.55 mm.
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identical to the one used by Wang et al. (1996b): after each time step, the bubble surface and the fluid–fluid
interface are interpolated using cubic splines. Details on this regridding can be found in Akima (1970). This
implementation enables us in certain cases to simulate beyond what was possible in Klaseboer and Khoo
(2004b) (see subsequent Fig. 2).

Small bubbles are being considered in our current study, of which the radius is assumed to be in millimetres or
below. Buoyancy effects will not have enough time to respond compared to the oscillation time of the bubble, and
thus the effect of gravity is negligible. This is verified by calculating the buoyancy parameter given in Klaseboer
and Khoo (2004a). On the other hand, the bubbles are sufficiently large for surface tension effects to be negligible
as well. Both effects, however, can easily be incorporated into the model if deemed necessary. For all results shown
(numerical and experimental), the dimensionless time is set to t 0 = 0 at the moment when the bubble is generated.

3. Results

3.1. Interesting bubble behaviours

Some typical, yet interesting bubble behaviours associated with the oscillation near an elastic membrane are
presented here. For an elastic interface with a relatively large elastic parameter j, a needle-like jet directed
towards the fluid–fluid interface is observed. The phenomenon of a so-called neutral collapse with bubble
splitting will also be shown. Moreover the separation of a ring shaped bubble separating from the main bubble
is simulated. These phenomena were observed in experiments; Brujan et al. (2001a,b), but have not been
described in previous numerical simulations.

The current numerical model can simulate the formation of thin high speed jets and avoids node clustering
around the jet tip, an event that can cause numerical instabilities. As an example, in Fig. 2a the numerical
simulation of a bubble near an elastic interface with H 0 = 0.88, a = 0.889 and j = 15 is shown. Klaseboer
and Khoo (2004b) showed that (in their Fig. 7) the simulation could not be continued beyond the formation
of a bubble with a very sharply pointed bottom (i.e. the beginning of the formation of a needle jet directed in
the upwards direction). In this pointed region, many nodes were accumulating as the simulation advanced.
The advantage of the present enhanced numerical model with node redistribution as mentioned in Section
2 is obvious. In Fig. 2a, the current method can simulate beyond this stage and predicts the formation of
the needle jet (between frames ‘H’ and ‘I’ as depicted in Fig. 2a during the bubble collapse or contraction
phase). In Fig. 2b the corresponding experimental results of Brujan et al. (2001a) are shown. The elastic mate-
rial of their experiments for this particular case consists of a mixture of 50% polyacrylamide (PAA) and 50%
water. The bubble was generated by focusing a laser beam in water. Comparisons show a very good resem-
blance between the experimental and numerical results. It is important to note that there is no tuning/fudge
factor in our model and the dimensionless parameter setting were deduced or justified from the experiment.
The corresponding stages of bubble development (viewed in terms of the bubble shapes) are indicated with
letters ‘A’–‘I’ in the frames in Fig. 2a and b. Although the timing for the corresponding frames between
Fig. 2a and b are not identical, the differences are reasonably small to be about 10% (for example, Frame
‘I’ appears for t 0 = 1.920 for the numerical results and for t 0 = 1.806 in the experiment). The fluid–fluid inter-
face is not clearly visible due to the specific lighting conditions in this experiment (diffused illumination). It
should be noted, however, that the experimental value of j = 12 (elastic modulus E = 2.03 MPa) was not used,
but j = 15 was taken instead for the simulations. As explained in Klaseboer and Khoo (2004b), the simula-
tions for j = 12 show a very small bubble splitting off at the bottom of the bubble. It was argued there that the
numerical model might slightly underestimate the actual value of j. From a physical point of view, the
observed behaviour is very interesting. After its initial growth phase (indicated with ‘A’), the bubble expands
nearly spherically symmetric (‘C’). Subsequently, the interface starts to move downwards towards the bubble
(‘D’). This leads to a perturbation initiated at the top section of the bubble surface that propagates along the
bubble interface (‘F’ and ‘G’). In this particular case, this perturbation is so strong that it travels all the way
towards the bottom section of the bubble interface and results in the formation of a very narrow region at the
bottom of the bubble (‘H’). In a stage between ‘H’ and ‘I’ (which are extremely rapid and have not been
recorded in the experiments), a high speed needle jet is formed and directed towards the interface. This jet pen-
etrates the bubble and impacts the bubble upper surface nearest the fluid–fluid interface as seen in ‘I’.
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To investigate the phenomenon of ‘bubble splitting’, the stand-off distance takes on H 0 = 1.22 in the sim-
ulation and the results are depicted in Fig. 3. The elastic interface that consists of a mixture of PAA and 60%
water gives an elasticity parameter j = 6.316 (using (2) with E = 1.04 MPa). The densities of the elastic mate-
rial and water are q2 = 1095 kg/m3 and q1 = 998 kg/m3, respectively, giving a = 0.911, which is near unity.
Our simulations are shown in Fig. 3a. Under similar conditions, Brujan et al. (2001b) observed experimentally
the ‘neutral collapse state’ that shows the bubble splitting up into two nearly equal sized bubbles towards the
end of the collapse phase (see Fig. 3b, reproduced here for comparison). The most important and interesting
features of the simulation are labelled as Frames ‘A’–‘F’. Fig. 3 clearly shows the formation of two bubbles
(‘‘upper’’ and ‘‘lower’’) with nearly equal size in Frame ‘F’. The simulation shows a jet penetrating the lower
bubble in the direction away from the upper bubble and eventually impacting on the lower bubble opposite
surface. Closer examination of the experimental observation shown in the last two frames of Fig. 3b suggests
that the jet tip has penetrated the lower bubble opposite surface. In Fig. 3b, in Frame ‘F’, it appears that a very
thin line is connecting the two bubbles, which might be some fragments of the bubble after the pinching. Sim-
ilar phenomenon of a ‘neutral collapse phase’ was also observed by Shima et al. (1989) for a bubble oscillating
near a composite surface (bubble splitting is also observed for other values of H 0, j and a, and the size of
upper and lower portions of the bubble varies depending on the values of these parameters, see Section 3.3
below).

Another interesting phenomenon is the formation of a flat horizontal ring-shaped toroidal bubble separat-
ing from the main bubble during its collapse. This is perhaps most clearly observed in the experimental results
of Brujan et al. (2001b). In Fig. 4b an experimental bubble evolves near an elastic interface of PAA with 70%
water content. In the first two frames shown, the bubble assumes a mushroom-like shape. In the last three
frames a horizontal line can clearly be seen. This is associated with the toroidal bubble separating from the
mushroom-bubble’s ‘‘cap’’. This phenomenon also occurred in some other experiments of Brujan et al.
(2001a,b). A numerical simulation for this phenomenon is shown in Fig. 4a. Based on the elastic modulus
for the material of E = 0.405 MPa and the density q2 = 1073 kg/m3, the following parameters are obtained
using (1) and (2): H 0 = 0.9, j = 2.51 and a = 0.93. The numerical simulation has largely captured the
Fig. 3. Comparisons of numerical and experimental results of a bubble near an elastic interface of PAA/60% water content: H 0 = 1.22,
a = 0.911 and j = 6.316 (neutral collapse phase). (a) Numerical simulation with e = 100. Frame dimensionless times: A at t 0 = 0.000, B at
t 0 = 0.567 (largest upwards deformation of the fluid–fluid interface), C at t 0 = 0.791 (near maximum bubble volume), D at t 0 = 1.649, E at
t 0 = 1.85, t 0 = 1.912 (bubble splits up in two almost equal parts) and F at t 0 = 1.914 (downwards directed jet developing in lower bubble).
(b) Experimental observation from Brujan et al. (2001a). Time interval is 20 ls between two frames (first frame at t 0 = 0, last frame #16 at
t 0 = 1.93). The maximum bubble radius is Rm = 1.55 mm.



Fig. 4. Typical example of a ring bubble separating from the main bubble. (a) Numerical simulation with parameters: e = 500, H 0 = 0.9,
j = 2.51 and a = 0.930 (H 0, j and a are chosen to match those in the experiment). Frame dimensionless times: Left at t 0 = 1.815, centre at
t 0 = 1.819 and light at t 0 = 1.822. (b) Experimental observation from Brujan et al. (2001b). The elastic material is PAA/70% water content.
Frame time interval is 1 ls (or dt 0 = 0.00645 dimensionless) and frame width is 1.4 mm (frame width in numerical results has also been set
to match this value). A ‘‘ring bubble’’ is seen here as a horizontal short line above the rounded portion of the bottom of the bubble bottom
in the 3rd, 4th and 5th frames from the left. The maximum bubble radius is Rm = 1.55 mm.
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formation of an elongated mushroom-bubble up to the stage where the top portion of the bubble is about to
be separated from mushroom-bubble’s cap.

3.2. The evolution of the fluid–fluid interface

The fluid–fluid interface can also exhibit very interesting phenomena. As a typical example, a simulation
was performed with H 0 = 0.76 and the results are shown in Fig. 5a. The corresponding experimental results
of Brujan et al. (2001a) are shown in Fig. 5b. The elastic material of their experiments consists of a mixture
of PAA and 80% water with E = 0.252 MPa and q2 = 1050 kg/m3, which give the corresponding numerical
parameters of a = 0.95 and j = 1.6. The initial stage at t 0 = 0 is indicated with ‘A’ in both the numerical
and experimental results. As the bubble expands, it pushes the fluid–fluid interface outwards (between Frames
‘B’ and ‘C’). The fluid–fluid interface reaches its maximum elevation at Frame ‘C’, well before the bubble
reaches its maximum volume. Due to a special ‘‘parallel’’ illumination technique implemented by Brujan
et al. (2001a), the fluid–fluid interface can be distinguished more clearly than in the previous examples. In both
the experiment and the numerical simulations, the fluid–fluid interface then retracts back towards its initial
position (‘C’–‘E’). Meanwhile, the bubble assumes a shape with a flattened top. In the next stage (‘F’–‘I’)
the fluid–fluid interface moves towards the bubble and the bubble assumes a typical mushroom shape (‘I’).
Finally, in Frame ‘J’ the bubble breaks up in two parts. This typical motion of the fluid–fluid interface towards
the bubble, thereby moving quite far from its equilibrium position, has only been observed for fluids with elas-
tic properties (i.e. j 5 0). The physical explanation is probably that a certain amount of elastic energy is
stored in Fluid 2, which is then released before the bubble reaches its maximum volume. This behaviour is
not only confined to the parameters of Fig. 5, but can be found for a wide range of parameters with j 5 0.

For a more quantitative description, the time–history of the elevation of the fluid–fluid interface at the axis
of symmetry, h 0(r 0 = 0, t 0), is plotted and shown in Fig. 6, where the dimensionless elevation is defined as
h 0 = h/Rm. The value of a = 1 is chosen in order to eliminate the influence of different densities between Fluids
1 and 2. The bubble is initiated at an initial distance H 0 = 1 away from the fluid–fluid interface. Several param-
eters of j have been chosen: (j = 0, 0.3, 0.8, 1.5, 2.5, 5, 12 and 50). For j = 0 (no elasticity), the fluid–fluid
interface returns back to its initial planar shape (equilibrium position) at about t 0 = 1.9. If j is increased to
0.3, the fluid–fluid interface clearly moves towards the horizontal equilibrium position for times t 0 > 1.8



Fig. 5. Comparison of fluid–fluid interface shape, mushroom-shaped bubble and bubble split-up between numerical and experimental
results. (a) Numerical simulation with parameters: e = 500, H 0 = 0.76, j = 1.6 and a = 0.95. Frame dimensionless times: A at t 0 = 0.002,
B at t 0 = 0.123, C at t 0 = 0.568, D at t 0 = 0.919, E at t 0 = 1.251, F at t 0 = 1.530, G at t 0 = 1.717, H at t 0 = 1.770, I at t 0 = 1.868, t 0 = 1.893
and J at t 0 = 1.918. (b) Experimental observation using ‘‘parallel’’ illumination from Brujan et al. (2001a). The frame time interval is 20 ls
(or dt 0 = 0.129 and thus the last frame is at t 0 = 1.935). The maximum bubble radius is Rm = 1.55 mm. Note the clearly visible motion of
the fluid–fluid interface.
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from the bubble, and vice versa. Parameters are e = 100, a = 1.0 and H 0 = 1.0 and j assumes the values: 0.0, 0.3, 0.8, 1.5, 2.5, 5, 12 and 50.
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and overshoots to assume a negative h 0 value. If j is further increased, the (first) return to the equilibrium
position seems to occur earlier. The maximum positive deflection decreases and also appears to take place
at earlier time as j increases. Overall, the maximum absolute minimum deflection occurs for j = 2.5 in which
h 0(r 0 = 0, t 0) takes on a negative value of about �0.35. For j larger than 2.5, the maximum absolute deflection
for the fluid–fluid interface decreases again. On the other hand, the maximum positive value of h 0(r 0 = 0, t 0)
decreases monotonically with increasing j owing to the ‘resistance’ of the elastic boundary. It only assumes
a value of h 0(r 0 = 0, t 0) = 0.06 for j = 50 as opposed to h 0(r 0 = 0, t 0) = 0.25 for j = 0. The oscillation time of
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the fluid–fluid interface, defined as the period from equilibrium position at t 0 = 0 through maximum and min-
imum elevation and back to the equilibrium position again, appears to increase with increasing j.

3.3. Parametric study of the interface behaviour for various j and H 0

In Sections 3.1 and 3.2, several interesting phenomena were observed. In this section, we will numerically
investigate the behaviour of a bubble near an elastic interface in a more systematic manner and highlight the
interesting features. In Fig. 7a, the elasticity parameter j is plotted on the horizontal axis, and the stand-off
distance H 0 on the vertical axis. The values of H 0 that are investigated are H 0 = 0.5, 0.75, 1.0, 1.5 and 2.0 and
j = 0.1, 0.3, 0.5, 0.8, 1.6, 3, 6, 12, 20 and 50. In order not to obscure the obtained results due to the effects of
different densities of the Fluid 1 and Fluid 2, their densities have been chosen to be equal with a = 1.0. For the
more interesting cases, the behaviour of the bubble and the fluid–fluid interface are plotted during the collapse
phase around the minimum bubble volume in sub-figures in Fig. 7b and also indicated with corresponding
numbers in Fig. 7a. For reference purposes, the times at which each sub-figure is taken are also indicated.
For these sub-figures, the initial position of the bubble is always located on the intersection of the dotted lines;
similarly the initial position of the fluid–fluid interface is indicated with a broken line and a fixed dimensionless
frame with width 2.0 is drawn around each bubble for ease of direct comparison.

In the upper left corner of Fig. 7a, for large H 0 and small j, the bubble remains almost spherical during its
collapse phase as the fluid–fluid interface has not much influence on the bubble behaviour. This region has
been indicated and is bounded by a solid demarcation line in Fig. 7a. A typical example ‘1’ is indicated for
(j,H 0) = (0.1,2.0). For j = 0.1 the bubble appears to split up when H 0 is decreased to 0.75 or lower. The
fluid–fluid interface also deforms more and moves further towards the bubble as H 0 decreases. The region
of ‘bubble splitting’ has also been broadly demarcated in Fig. 7a and appears mainly for moderate values
of j and H 0. In some cases the bubble splits in almost equal parts: (j,H 0) = (0.1,0.75) indicated with ‘2’ in
Fig. 7a and b, while in others, a larger upper [(j,H 0) = (12,0.75) (case ‘6’)] or lower [(j,H 0) = (0.5,1.0) (case
‘3’)] bubble splits off. Bubble splitting can be seen in quite a number of cases. The behaviour is not always
straightforward, e.g. for (j,H 0) = (3.0,1.5) or case ‘5’, the bubble develops a very thin jet directed away from
Fig. 7. (a) Parametric study of bubble and interface behaviour for various H 0 and j; H 0 varies from 0.5 to 2.0 and j from 0.1 to 50. Other
parameters: e = 100 and a = 1. The demarcation lines depict three broad regions on bubble characterisation. (b) Some interesting bubble
shapes, also indicated with ‘1’–‘7’ on Fig. 7a are: ‘1’ spherical collapse; ‘2’, ‘3’ and ‘6’ bubble splitting; ‘4’ ring split-off; ‘5’ downwards jet;
and ‘7’ upwards jet.
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the fluid–fluid interface. Other simulations with parameters near this particular case at (j,H 0) = (1.6,1.5),
(6.0,1.5), (3.0,2.0) and (3.0,1.0) depict a break up of the bubble in two separate bubbles. For very large values
of j (>20), a region with a jet directed towards the fluid–fluid interface is seen to appear; as an example case ‘7’
with (j,H 0) = (50,1.5) is shown in Fig. 7b. The separation of a ring-shaped bubble from the main bubble
occurs mainly for H 0 < 1.0 and j > 0.5, but not for j� 6.0. A typical example ‘4’ is shown for
(j,H 0) = (0.5,0.5) in Fig. 7b. All the regions mentioned above are broadly demarcated in Fig. 7. A full para-
metric study with much more details is available directly from the authors.

It is also interesting to note that while keeping H 0 constant, the fluid–fluid interface deforms most for mod-
erate values of j, but it hardly moves for j = 50. It seems that for larger j, the fluid–fluid interface behaves
more like a solid surface even though the values of j are still comparatively very small compared to that of say
solid aluminium where j � 1.4 · 105 (obtained via E = 70 GPa, q2 = 2710 kg/m3 and t = 0.3 in (1) and (2)).

In general, for lower j, the bubble tends to move away from the initial quiescent horizontal fluid–fluid
interface, whereas for larger j (especially for j > 6.0), the centre of mass of the bubble appears to move
towards the said fluid–fluid interface. It should be mentioned, however, that the present simulations are lim-
ited to j 6 6 for the minimum H 0 value of 0.5 (this region is also indicated in Fig. 7a). For higher j, the bubble
and fluid–fluid interfaces come close to each other and can lead to numerical instabilities (physically, the dom-
inance of surface science takes precedence which is not accounted for in the present model). The maximum
elevation of the fluid–fluid interface during the collapse phase is obtained for H 0 = 0.5 and j = 1.6. The
fluid–fluid interface even crosses the point where the bubble was initiated on the axis of symmetry for this case.

3.4. Influence of the strength parameter e

In general, the strength parameter e does not have a profound influence on the results of the simulations,
and therefore e = 100 has been used for most of our simulations. The larger e, the smaller the bubble will
become in its collapse phase. For example a value of e = 100, corresponds to an initial dimensionless minimum
radius of R00 ¼ 0:1485. For e = 500, this reduces to R00 ¼ 0:08397. The second minimum volume will also be
correspondingly smaller for larger values of e. From the experimental data, for example Fig. 3 of Brujan
et al. (2001a), it can be observed that the (second) minimum radius is only about 0.1. In the other experimental
cases, the minimum radius is slightly larger (probably also due to the limited time resolution of the camera).
As such, values of e = 100 and 500 are employed in our simulations, lying in the same range as the experiments
where most of our comparisons are made.

In certain cases, however, the strength parameter e can have an influence on the final stage of bubble evo-
lution. This occurs when the simulations are performed near a ‘regime’ change of the system as indicated in
Fig. 7. For example, if the main bubble splits up into a large and very small sub-bubble, a very small change in
the parameters could lead to the disappearance of this small bubble. In Fig. 8, such a case is shown for a bub-
ble near an elastic interface with parameters H 0 = 1.14, j = 1.6 and a = 0.95. In Fig. 8a, e = 100 whereas in
Fig. 8b, e = 500. The foremost noticeable difference between Fig. 8a and b is that the initial bubble size in
Fig. 8b is smaller. As far as bubble shapes are concerned, not much differences can be distinguished between
the two simulations during the whole expansion phase. In the collapse phase, the bubbles assume a mushroom
shape for both cases. However, the final collapse phase is different as a small bubble splits off for e = 100 case
(Fig. 8a), but no such event is observed in e = 500 case (Fig. 8b). Nevertheless, a distinct downwards jet devel-
ops for both cases. Incidentally, this simulation corresponds to the experimental results of Brujan et al. (2001a)
(their Fig. 3a) with an elastic boundary consists of PAA gel with 80% water content. The elastic material has
density q2 = 1050 kg/m3 and elastic modulus E = 0.25 MPa. The maximum bubble maximum radius is
Rm = 1.55 mm. Close examination of the last two frames of these experimental results suggests that there is
a clear downwards moving jet that can only be identified with a downwards moving ‘plume’ generated after
the downwards jet impacts the bubble opposite surface. The shape of the bubble when it reaches its recorded
minimum volume at t 0 � 1.677 is rather distorted and it is not clear if a small bubble has been split off or not.
In the numerical results, the time for the minimum volume bubble configuration prior to jet impact is slightly
different for both strength parameters e under investigation. For e = 100 (Fig. 8a) the said time is t 0 = 1.941
whereas for e = 500 the time is t 0 = 1.849 (Fig. 8b), giving a difference of about 10% when compared to the
experimental result.



Fig. 8. Comparison of the influence of the strength parameter e on the bubble shape as a function of time. Simulation parameters:
H 0 = 1.14, j = 1.6 and a = 0.95. (a) Numerical simulation with e = 100. Frame dimensionless times: t 0 = 1.033 (near maximum volume,
the bubble shape at t 0 = 0.000 is also indicated), t 0 = 1.864, t 0 = 1.931, t 0 = 1.939, t 0 = 1.940 and t 0 = 1.941. (b) Numerical simulation with
e = 500. Frame dimensionless times: t 0 = 1.002 (near maximum volume, the bubble shape at t 0 = 0.000 is also indicated), t 0 = 1.731,
t 0 = 1.837, t 0 = 1.846, t 0 = 1.848 and t 0 = 1.849 (including a close-up of the bubble shape).
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3.5. Perturbation of the interface and pressure contour plots

Klaseboer and Khoo (2004b) showed that a ‘perturbation’ or ‘disturbance’ is invariably always initiated
near the top section of the bubble nearest the fluid–fluid interface and propagates on the bubble surface
for a non-equilibrium bubble oscillating near an elastic interface. The perturbation is believed to be originated
from the recovery of the elastic interface near the bubble’s maximum size, i.e. the elastic boundary contracting
towards its initial equilibrium state. Depending on the values of the parameters H 0, j and a, this perturbation
can travel around the bubble and be responsible for an impinging jet formation as well as inducing bubble
splitting. It appears that in the bubble collapse (or contraction) phase, this perturbation or ‘indentation’ on
the bubble surface is associated with a pressure increase just beside the perturbation region in Fluid 1. As
a typical example, the dimensionless pressure plots are shown in Fig. 9 for three instantaneous times
(t 0 = 1.55, 1.83 and 1.90) for the case depicted in Fig. 3. The grey regions in Fig. 9a–c indicate the bubble
and Fluid 2. The pressure contour plots are only indicated in Fluid 1. In Fig. 9a, the pressure plot is shown
at t 0 = 1.55 when the bubble is in its initial collapse phase. The pressure outside the bubble increases rapidly (in
the bubble the pressure is the lowest at p 0 = 0.22). A low pressure region outside the bubble is located between
the bubble and the fluid–fluid interface. This region is associated with the ‘suction’ of the elastic Fluid 2, which
at this instance has a downwards displacement. At a distance far from the bubble, the dimensionless pressure
assumes a value of 1.0. In Fig. 9b, the pressure inside the bubble has increased to p 0 = 2.64, a value well above
the reference pressure p0ref of 1.0. Distortions on the bubble surface can be clearly distinguished on the upper
sides of the bubble. The regions of Fluid 1 next to the said upper sides of the bubble are associated with high
pressure spots with p 0 = 3.8 (since the problem under consideration is axial symmetric, this high pressure
region is circular in shape). Far from the bubble, the pressure contour profiles are still nearly spherical except
for the region between the bubble and the fluid–fluid interface. Next, in Fig. 9c, the bubble clearly assumes a
mushroom shape due to the existence of the distortion on the bubble surface probably caused by the high pres-
sure region in Fluid 1. At this instance, the pressure inside the bubble is p 0 = 36.2, and in a small region just
outside the bubble p 0 = 40. The pressure in Fluid 1 surrounding the bubble decreases rapidly for increasing
distances from the bubble centre. We found that the example shown in Fig. 9 is quite typical of other simu-
lations which also depicted similar behaviour (results not shown here); invariably in the vicinity of the ‘per-
turbation/disturbance’ propagating on the bubble surface is the presence of a localized high pressure region
in Fluid 1.



Fig. 9. Iso-pressure contours of the neutral collapse phase of Fig. 3 (numerical parameters are: e = 100, H 0 = 1.22, a = 0.911, j = 6.316).
In each figure the bubble and Fluid 2 are shaded in grey. (a) t 0 = 1.55; in which the bubble shape is still nearly spherical. Low pressure
region is created between the bubble and Fluid 2. (b) t 0 = 1.83; when the bubble shows some ‘distortions’ on its surface, which is associated
with the high pressure region next to the distorted surface and propagates from the top to the bottom section of the bubble. (c) t 0 = 1.90;
with the bubble pinching before splitting up. A high pressure region is located just next to the pinching circumference outside the bubble.
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4. Discussion and conclusions

A boundary integral method based model was used to simulate the phenomena of an oscillating bubble
near an elastic interface and the results have been compared with experimental data. Particular behaviour
associated with bubble and fluid–fluid interface include bubble splitting, ring-shaped secondary bubbles sep-
arating from the main bubble and the formation of impinging high speed jets directed towards or away from
the elastic interface.

In our model, the elastic interface has been modelled as a fluid and its elastic properties have been imple-
mented using a pressure difference across its surface that is in contact with a non-elastic fluid (fluid–fluid inter-
face). The pressure difference is linearly proportional to the elevation of the fluid–fluid interface from its
initially planar equilibrium position. A boundary integral method is applied to the non-elastic fluid that con-
tains the bubble (Fluid 1) as well as in the elastic fluid (Fluid 2). The simulations showed that during the inter-
action of the elastic interface with the bubble, a high pressure region builds up just outside the bubble, which
can travel across the bubble’s surface as a perturbation of the bubble surface. Depending on the growth of this
perturbation and its speed across the bubble surface, the bubble can either split up or form a jet. It is reckoned
that the method presented can be developed further and used as a basis to model the bubble behaviour near an
elastic interface such as those observed in certain biomedical treatments (e.g. shock wave lithotripsy, shock
wave orthopaedics, pain management, etc.).

It may be mentioned that Shaw et al. (1999) studied experimentally a laser-generated bubble near a mem-
brane and observed similar behaviour to that of the present study. In their results, the bubble also assumes a
mushroom shape before splitting into two portions. This suggests that the phenomena concerning a bubble
oscillating near an elastic boundary (i.e. mushroom shaped bubbles and bubble splitting) also appear when
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a bubble oscillates near an elastic membrane. Note also that similar results have been observed experimentally
for bubbles oscillating near thin elastic layers, used as coating for solid bodies by Gibson and Blake (1982),
Blake and Gibson (1987). The simulations of a non-equilibrium bubble near a thin elastic layer is beyond
the scope of the current work since the present model only deals with (semi) infinite elastic materials and
not thin layers; this awaits our future study.
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